
18 The Delphi Magazine Issue 33

Round
& Round
How random
are your numbers?
by Julian Bucknall

In March 1997, I was pleased to
see that a certain competing pub-

lication had an article on random
numbers. ‘At last,’ I said (well, at
least to myself, speaking out loud
to oneself in a cinema queue is
somewhat frowned upon), ‘a
chunky algorithm article showing
Delphi programmers that pro-
gramming is not just dropping
components on forms and linking
things up. Some tender algorithmic
meat for that RAD gravy.’

Unfortunately, as I read on, my
heart started to sink: the first part
of the article introduced a random
number generator that was, well,
hopeless, even though based on an
algorithm that should have pro-
duced a good one. To be fair, the
author noticed that the generator
was bad and said so, but he had no
idea why, or even how to show that
it was. Luckily he discarded it for
the second part of the article
where he used the standard Delphi
Random function instead to talk
about different types of random
number distribution (and this part
was worth reading). So, what was
wrong with the generator he pro-
posed? In this article we’ll have a
look at random numbers, at what
makes them random, write a
random number generator, and
point out the flaw in this author’s
routine (from now on we’ll be call-
ing it Algorithm K). In doing so, we’ll
lay the foundation for an apprecia-
tion of the difficulties of random
numbers and their generation.

Confusion
The best place to start with any dis-
cussion on random numbers is at
the beginning. What is a random
number? To quote Don Knuth: ‘In a
sense, there is no such thing as a

random number; for example, is 2 a
random number?’ (The Art of
Computer Programming, Volume 2,
3rd Edition, see the boxout). Apart
from the joke, he raises a serious
point: when we talk about random
numbers, we generally don’t mean
individual ones, we mean a
sequence of numbers that ‘look’
random. Each number in the
sequence seems to bear no rela-
tion to either its preceding or its
succeeding neighbor. Of course,
one man’s randomness may be
another man’s deterministic
sequence. Is {2, 6, 5, 3, 5, 8, 9, 7, 9, 3,
2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9} a
random sequence of the digits 0-9?
It looks pretty random to me, pre-
sented in such an in-your-face fash-
ion, but is it? Someone who’d
memorized the first 30 digits of π
might not necessarily agree, after
all these are the digits in its deci-
mal expansion that appear immedi-
ately after 3.14159, but does that in
turn mean that they are any the
less random?

In fact, if you asked someone to
reel off a sequence of random
digits, you’d probably get some-
thing that was anything but
random. We, as humans, are

conditioned to think of certain
digits as ‘religious,’ ‘lucky’ or
‘magic’ numbers (examples being
3 or 7) and we tend to uncon-
sciously favor them. So if you ask
someone to think of a random
digit, say one hundred times in a
row, they’d tend to respond with
some digits more often than
others. Maybe they’d be prone to
linking two digits together as well,
eg, a 2 might tend to be followed by
a 1 for a subconscious 21. Also, the
average person would shy away
from saying the same digit twice in
a row (which happens in real life
about 1 time in 10).

Taking the other viewpoint, we,
as humans, are extraordinarily
bad at determining whether a
random sequence is random or
not. If a sequence of random digits
had three 4s in a row, one after the
other, would you reject it? What
about four of them, five of them, 42
of them? Thinking with our prob-
ability hats on, the next digit in a
random sequence could be a 0
with probability 1/10, a 1 with the
same probability, and so on.
Hence, the probability of two 4s in
a row would be 0.01, three of them
0.001, and so on. Of course, any

20 The Delphi Magazine Issue 33

other sequence of length N would
have the same probability of
appearing as N successive 4s. It’s
just that N 4s clumped together in a
random sequence looks less than
random to our eyes.

So how can we decide if a
random number sequence is, in
fact, random? We have to fall back
onto statistics. After all, I’ve just
raised the head of the probability
monster, so why not call in the
statistics monster as well?

The first test we might apply to
see if a sequence of digits were
random is to count all the 0s, the
1s, the 2s and so on. We’d expect
the count of each digit should be
about a tenth of the total. So, if we
had a 100-digit sequence, we’d
expect to see roughly ten of each
digit.

Expect. About. Roughly.
Is there some principle more rig-

orous we can apply here? What if
the counts were exactly ten each?
That sounds a little fishy to me for a
purely random sequence. One
would expect that, in a given
sequence of 100 digits, some digits
would be better represented than
others just by chance. In other
sequences, other digits might be
better represented. But how much
of a spread from exactly 10 can we
allow before it starts getting a little
fishy again?

Thieves Like Us
Imagine we had a pair of coins that
we think someone has tampered
with. How could we prove that they
were biased? Of course, one crook
might be completely dumb and
have weighted them to always
show heads, but he’d have been
caught long ago, leaving our
putative master con artist full rein.

Two Heads (1) One Of Each (2) Two Tails (3)

Our tests (100 tosses) 28 51 21

Probability ¼ ½ ¼

Expected number
for 100 tosses 25 50 25

➤ Table 1: The results of tossing a pair of ‘biased’ coins 100 times

1% 5% 95% 99%

ν = 1 0.00016 0.00393 3.84155 6.635

ν = 2 0.02010 0.10260 5.99121 9.210

ν = 3 0.1148 0.35184 7.81494 11.34

ν = 4 0.2971 0.71069 9.48730 13.28

ν = 5 0.5543 1.14548 11.07025 15.09

ν = 6 0.8721 1.63550 12.59125 16.81

➤ Table 2: Percentage points of the Chi-Square distribution

Let’s throw the coins 100 times,
say, and plot the number of times
we toss individual scores in a table.
Our table might look like Table 1.

I’ve added the probability of
each event to Table 1, and also the
expected number of tosses for
each event.

Well, just looking at it we could
argue the toss (pun intended!) and
say that the coins are biased to
heads, but is the difference that
great? Let’s look at the spread (the
difference) of our results from the
expected values. We’ll square
these differences to accentuate
them and to get rid of any negative
values. The sum of these squared
differences would be a measure of
how biased these coins are. Calcu-
lating this sum, I get 26 (= 32 + 12 +
42). But, hang on, we ought to incor-
porate the probability of each
event somehow. We should get a
bigger squared difference for one
of each than for two heads, just
because the former is more likely
to happen. To put it another way,
the difference of 3 for two heads
seems more significant than the
difference of 1 for one of each. So
let us divide each squared differ-
ence by the expected result of that
event. The new sum we calculate is

X
C p

p
i i=

−∑ ()100
100

2

1

3

where the Ci are our observed
counts and the pi are the probabili-
ties of each event i. I get a value for
X of 1.02. What we’ve just calcu-
lated is the chi-squared value for
our tests. We can look up this value
in a standard table of the chi-
squared distribution (Table 2).

The table looks slightly daunt-
ing, but is quite easy to under-
stand, once explained. The values
shown are selected values from
the chi-square distribution with ν
degrees of freedom. Huh, wazzat
funny ν then? Without being rigor-
ous, in our discussion the number
of degrees of freedom is one less
than the number of ‘buckets’ we
are counting things or events into.
In our case, we have three buckets:
one for two heads, one for one of
each, and one for two tails, and so
the number of degrees of freedom
for our experiment is 2. Look along
the ν = 2 line and there are four
values in the four columns. If we
look in the 1% column the value
there (0.02010) should be read as:
‘the value X we calculated should
be less than 0.02010 1% of the
time.’ In other words if we
repeated our experiment 100 times
then about 1 of them would have
an X value of less than 0.02010. If
we found that a lot of these experi-
ments had a value less than
0.02010 then it would give a very
strong indication that flipping the
coins is not a random event, and
that they are biased. A similar
interpretation can be made for the
5% column. Moving to the 95%
column, the value there should be
read as: our value X should be less
than 5.99121 95% of the time, or it
should be greater than this only 5%
of the time. Similarly for the 99%
column.

We see that our X value falls in
between the 5% value and the 95%
value and so we don’t have a

May 1998 The Delphi Magazine 21

strong conclusion either way: we
have to assume that the coins are
true. If, on the other hand, our X
value was 10, we see that this result
should only occur in less than 1%
of our trials (10 > 9.210, which is the
99% value). And this is therefore a
strong indication that the coins
were biased. Of course, we should
perform more experiments and see
how our spread of X values fit into
the chi-squared distribution: from
an extended set we’ll get a better
feel for the bias of the coins. We
don’t want to be caught out with a
rogue result, one which probabil-
ity theory tells us should happen,
albeit infrequently.

Way Of Life
Generally, we take the same
boundaries at either end of the
range of the chi-squared distribu-
tion, say 5% and 95%, and then say
that our experiment is significant
at the 5% level if it falls outside
these boundaries, or is not signifi-
cant at the 5% level if it falls in
between them.

One thing I haven’t mentioned so
far is this: how many individual
events should we generate? In our
coin test we did 100 flips. Is this
enough, can we get away with less,
or should it be more? The answer is
unclear. Knuth states that a
common rule of thumb is to make
sure that the expected number of
events for each bucket should be 5
or more (our expected numbers
are 25, 50 and 25 so we’re all right
there), and that the more events to
the bucket, the merrier.

Back to our hypothetical
random number sequence, and
let’s apply what we’ve just learnt.
We calculate the count of each
digit in our sequence and then cal-
culate the X value and then check it
against the chi-square distribution
with 9 degrees of freedom (here we
have 10 buckets, one for each digit,
and thus the number of degrees of
freedom is one less than this). We
would have to have at least 50
digits to make the expected
number for each bucket at least 5.

If we take our sequence as a
series of pairs of digits from 00 to
99, then we can bucket the
sequence again (counting each

pair). There will be 100 buckets
this time (99 degrees of freedom),
each having a probability of 1/100.
We would have to have at least 500
pairs of digits (1000 digits).

We could go further (eg triplets
of digits), but the space require-
ments grow tremendously quickly
and there are other tests we could
do. Before we look at them, let’s
have a look at how to generate
random number sequences. Once
we have a few random number
sequence generators under our
belt (including Algorithm K) we
can test their output against the
tests I’ve shown so far and against
the tests to come.

Every Little Counts
The first thing to realize is that a
deterministic algorithm can never
generate random number
sequences in the same ‘way’ that
throwing dice does, or counting
beta particles from a radioactive
source. The whole point about a
deterministic algorithm is that it
generates the same result from the
same starting point. If I told you
that Generator X using a particular
algorithm generates the new
random number 65584256 from a
starting value (or ‘seed’) of
12345678, then you’d know 5
months from now that X would cal-
culate exactly the same next value
from this same seed. There is abso-
lutely no randomness present in
the calculation of the random
number sequence, rather it is the
sequence of numbers so generated
that can be shown (by statistical
tests) to be random. Some people
prefer to call sequences from a
deterministic algorithm pseudo-
random, compared with ‘true’
random numbers from a quantum
source such as a decaying radioac-
tive isotope. Personally, I think this
distinction is just splitting hairs,
especially when it is impossible to
distinguish between a sequence of
random numbers and a sequence
of pseudo-random numbers.
Besides which it gets really tedious
writing ‘psuedo-random number
generators’ all the time, it’s bad
enough without the ‘pseudo.’ Do
note, however, that if you know or
suspect that a sequence of random

digits comes from a pseudo-
random number generator of a
particular type, you can make
some good guesses at the parame-
ters of the generator: this is why
cryptographic random number
generators (ie those used to
encode messages) are extremely
complex algorithms to try and hide
some subtle correlations between
successive random numbers.

The history of random number
sequence generators starts off
with one of the most illustrious
names in computing: John von
Neumann. He put forward the fol-
lowing scheme in about 1946: take
an N-digit number, square it and
from the result (expressed as a
2N-digit number, padded on the
left with zeros if required) take the
middle N-digits as the next number
in the sequence. If we take N as 4,
for example, and have 1234 as our
starting point, the next few num-
bers in the random number
sequence are 5227, 3215, 3362,
3030, 1809 and so on. This method
is known as the middle-square
method. It will be helpful to point
out a couple of big problems with
this algorithm. Using our 4-digit
example again, suppose we hit
upon a value in the sequence that
is less than 10. Calculating the
square we get a number less than
100, meaning that the next value in
the sequence is 0 (we would take
the middle four digits from
000000xx). This again is less than
10, and so the next and all subse-
quent random numbers in the
sequence would also be 0. Hardly
random! Also, if you start off with a
number like 4100, you’ll end up
with the sequence 8100, 6100,
2100, 4100... ad infinitum. There are
other pathological sequences like
this and it’s quite easy to hit them
but difficult to do anything about
it. I tried to write a routine, hon-
estly, based on the middle-square
method in order to check it with
the tests described later, but it was
hopeless. Within about 50 or 60
random numbers, it had settled
down into generating a series of
zeros, or the minimal cycle.

The next big step forward in
random number generators came
from D H Lehmer in 1949 (putting

22 The Delphi Magazine Issue 33

several nails into the coffin of the
middle-square method, if not all of
them). What he proposed is known
as the Linear Congruential Method
for generating random number
sequences. Choose three num-
bers, m, a, and c, and a starting
seed X0 and use the following for-
mula to generate a sequence of
numbers Xi:

X aX c mn n+ = +1 () mod

The operation mod m is calculated
as the remainder after dividing by
m, for example 24 mod 10 is 4.

If we choose our numbers well,
the sequence generated will be
random. For example, the standard
System random number generator
in Delphi 1, 2 and 3 uses a =
134775813 ($8088405), c = 1, and
m = 232, and it is up to us, the pro-
grammers, to set the starting seed
X0 (it’s the RandSeed global variable:
we can set it directly or use the
Randomize procedure).

It must be noted that if we get a
particular value X in the generated
sequence at two different points,
then the sequence in fact repeats
at those two points: the algorithm
is deterministic, remember.
Because of the modulus operator,
no value in the sequence can be
greater or equal to m, and all
values are between 0 and m-1.
Hence, the sequence will repeat
itself after at most m values. It may
(if we are inept at choosing a, c and
m) repeat much sooner, a simple
example is a = 0: the sequence boils
down to {c, c, c...}, repeating itself
after only one term.

So what are good values for
these magic numbers a, c and m?
Much has been conjectured, pos-
ited and proved in the literature.
Generally, we choose m to be as
large as possible so that our repeat
cycle is as large as possible as well,
and it’s usually chosen as the inte-
ger size of the machine (eg, 232 for
Win32 systems). This also makes
the modulus operation that much
faster, the modulus is the lower 32-
bits of the result of (aXn + c). For c,
we generally choose 1. And a is
usually chosen to be relatively
prime to m (ie, the greatest
common divisor of a and m is 1).

State Of The Nation
I’ll now introduce Algorithm K.
This has a = 31415927, c = 0, and m =
27182819. Seems all right on the
surface. Let’s investigate a little
further. The greatest common divi-
sor of a and m is 1, so we could be
on the way to generating a
sequence of random numbers that
will only repeat after at most
27182819 values. Having c = 0 is a
pain in the neck: whenever we get a
zero in the sequence, we have to
fake it to another number so that
we don’t start to repeat getting
zeros (Algorithm K has a special
test to force a zero to a one before
the calculation), a better value
would’ve been c = 1 and this prob-
lem would have been avoided.
Here’s the important bit of the
routine:

var
iRandSeed : LongInt;

...
iRandSeed :=

(iRandSeed*31415927) mod 27182819;

Can you spot the problem here? It’s
overflow. The multiplication
should produce a 64-bit answer,
however, the machine code gener-
ated by the compiler will discard
the top 32 bits. So only the lower 32
bits of the result of the multiplica-
tion is used by the mod operator
(there is also a problem with nega-
tive values, but we won’t go into
that here). The calculation, as writ-
ten and compiled, is throwing
away the most significant part of
the multiplication. And, believe it

or not, that is why Algorithm K
fails. If the generator had been writ-
ten in assembly language (taking
care of the 64-bit intermediary
result) it would have been perfect.
If the ‘mod 27182819’ had been left off
the calculation it would have been
pretty good (taking the lower 32
bits of a multiplication is equiva-
lent to mod 232, remember). The
problem lies in taking the explicit
mod 27182819 after doing the
implicit mod 232: 27182819 divides 232

19.78 times. In other words, the
random number sequence would
be biased towards the first ¾ of the
random number space.

Anyway, onwards with the
theory. There is a minor problem
in using m = 232 which isn’t readily
obvious: the lower bits of the
random number values are much
less random than the higher bits.
For a discussion of why this is,
please see Knuth. However, the
sheer ease of taking the modulus
generally overwhelms this minor
problem and there are other things
we can do to make the random
number sequence more random.
One simple algorithm is to gener-
ate the next 32-bit random number
in the sequence from two separate
calculations and taking the upper
16 bits from each of the sub-
calculations. This does have the
negative effect of reducing the
cycle length.

Another problem with using
m = 232 stems from the fact that
Delphi does not have a true DWORD
(ie, a type that can hold a number
from 0 to 232-1, an unsigned long

type
PRandArray = ^TRandArray;
TRandArray = array [0..54] of longint;

const
Inx1 : integer = 0;
Inx2 : integer = 0;
RArray: PRandArray = nil;

begin
if (RArray = nil) then begin
New(RArray);
..fill elements from another generator..
Inx1 := 0;
Inx2 := 33;

end;
RArray^[Inx1] := RArray^[Inx1] + RArray^[Inx2];
Result := RArray^[Inx1] shr 1;
inc(Inx1);
if (Inx1 = 55) then
Inx1 := 0;

inc(Inx2);
if (Inx2 = 55) then
Inx2 := 0;

end;

➤ Listing 1

May 1998 The Delphi Magazine 23

integer). If we code these random
number generators in Delphi we
continually have to make sure that
we don’t have an implicit conver-
sion to a LongInt and the produc-
tion of a negative number from
that. Assembly coding removes
this problem.

Bizarre Love Triangle
The Linear Congruential Generator
is pretty good, but is there some-
thing better? In 1958, Mitchell and
Moore suggested the following
generator:

Xn+1= (Xn-24 + Xn-55) mod m, with n≥ 55

and X0, ..., X54 are generated from
some other generator, like a Linear
Congruential algorithm. This is
known as an additive generator. To
code this in Delphi we use m = 232

(note that again the lower bits of
our random numbers will be less
‘random’ than the upper bits), and
we make use of an array of 55
values and two index variables.
These variables have to be static
(ie, their values have to remain set

in between invocations of the
random number routine). We also
cheat a little, by making sure that
the generator only produces num-
bers between 0 and MaxLongint, see
Listing 1.

There are obvious improve-
ments we can make to this routine
(eg coding as a class, so we can
destroy the array at the end of the
program, and using assembler).
The cycle length of this generator
has been shown to be 255-1, about 8
million times as long as the stan-
dard Delphi one. To put it another
way: suppose you have a program
that uses 1 million random num-
bers per second. You’d recycle all
the random numbers from the
Delphi Random function 20 times in a
day. At the same rate, this genera-
tor would be able to go for just over
1,000 years before repeating.

Well, we now have three random
number generators under our belt:
the standard Random function in the
System unit (a good linear congru-
ential generator), Algorithm K, and
a more complex additive one. Now
let’s consider how to test them.

Age Of Consent
The tests all follow the same logic.
We’ll use random numbers
between 0.0 (inclusive) and 1.0
(exclusive). We count various
events derived from these random
numbers into buckets, calculate
the probability associated with
each bucket, from which we can
work out the chi-square value and
apply the chi-square test with the
number of degrees of freedom
being one less than the number of
buckets. A little abstract, but you’ll
see the idea in a moment.

The first test is the simplest: the
uniformity test. This is the one we
were discussing earlier. Basically,
the random numbers are going to
be checked to see that they ‘un-
iformly’ cover the range 0.0 to 1.0.
We create 100 buckets, generate
10,000 random numbers, and slot
them into each bucket. Bucket 0
gets all the random numbers from
0.0 to 0.01, bucket 1 gets then from
0.01 to 0.02, and so on. The
probability of a random number
falling into a particular bucket is
obviously 0.01. We calculate the

24 The Delphi Magazine Issue 33

Books
In any programming environment, be it Delphi or something else, you
need a good set of algorithm books. Books to teach you about algo-
rithms, discuss efficiency, provide eye openers as to what is actually
available, to set your imagination alight. For a very long time (20
years), the definitive set of algorithm books has been the three vol-
umes of The Art of Computer Programming by Donald Knuth (pub-
lished by Addison Wesley). Originally planned as a series of seven
volumes, Knuth completed three and then moved onto computer
typesetting and other research. The names of the three volumes are
Fundamental Algorithms, Seminumerical Algorithms, and Sorting
and Searching. I well remember consulting them in the library at
Kings College, London when I had some thorny problem with one of
my programming courses for my degree. Although tough going in
places, they are still as valid today as in the late 70s. Suddenly, in 1996,
he decided to bring all three volumes up to date, before embarking
on Volumes 4 and 5. I’m happy to say that the first two new editions
are now available and the Addison Wesley website was promising the
third new edition in April 1998. Of particular relevance here is that
Knuth rewrote the entire random number section in Seminumerical
Algorithms, to bring it completely up to date with the furious amount
of research going on in random numbers. Recommended, if you are
really serious about learning more about algorithms.

As I have your attention, I’m pleased to note that Robert Sedgewick
is rewriting his tome called Algorithms, another of my favorite
well-thumbed algorithm books. The previous editions appeared in
versions for C, C++ and Modula 2 as well as Pascal, and Sedgewick has
now decided (wisely) just to concentrate on C, leaving it up to the
reader to cast the code into the language of his or her choice.
Anyway, the first volume has appeared: Algorithms in C (Third
Edition) Parts 1-4, again by Addison Wesley. The second volume, parts
5-8, are promised in the not too distant future. Also recommended.

chi-square value for our test and
check that against the standard
table, using the 99 degrees of
freedom line.

The second test is a little more
interesting: the Gap test. No, this
isn’t a test to see whether you can
walk past a Gap store without
buying anything! The Gap test
ensures that you don’t get runs of
values in one particular range fol-
lowed by runs in another, flip-
flopping between the two, even
though as a whole the random
numbers are evenly spread out.
Define a subrange of the range 0.0
to 1.0, let’s say the first half: 0.0 to
0.5. Generate the random num-
bers. For each random number,
test to see whether it hits our
subrange or whether it misses.
You’ll get a sequence of hits and
misses. Look at the runs of one or
more misses (these are called the
gaps between the hits, hence the
Gap test). You’ll get some runs of
just one miss, of two misses, and so
on. Bucket these lengths. Let’s say
the probability of a hit is p (it’ll be
the width of the subrange
expressed as a decimal) and so the
probability of a miss is (1-p). We
can now calculate the probability
of a run of one miss: (1-p).p; of two
misses: (1-p)2.p; of n misses:
(1-p)n.p, and hence calculate the
expected numbers for each run
length. From then it’s a short step
to the chi-squared test. We shall
use 10 buckets, hence there are 9
degrees of freedom. Generally, we
repeat the Gap test for the first and
second halves of the range and for
the first, second and third thirds.

The third test is known as the
Poker test. The random numbers
are grouped into sets or ‘hands’ of

five and the numbers are con-
verted into ‘cards’, each ‘card’
actually being a digit from 0 to 9.
The number of different cards in
each hand is then counted (it’ll be
from 1 to 5) and this result is buck-
eted. Because the probability of
only one digit repeated 5 times is
so low, it is generally grouped into
the ‘2 different-digits’ category.
Apply the chi-squared test to the
four buckets: there will be 3

degrees of freedom. The probabil-
ity for each bucket is difficult to
calculate (it involves some combi-
natorial values called Stirling num-
bers) so I won’t present it here.

The fourth test is the Coupon
Collector’s test (the names of
these tests are nothing short of
bizarre!). The random numbers
are read one by one and converted
into a ‘coupon’ or a number from 0
to 4. The length of the sequence
required to get a complete set of
the coupons (ie, the digits 0 to 4) is
counted: this will obviously vary
from five onwards. Once a full set
is obtained, we start over. We
bucket the lengths of these
sequences and then apply the chi-
squared test to the buckets. We’ll
use buckets for the sequence
lengths from 5 to 19, and then have
a composite bucket for every
length after that. So, 16 buckets
and hence 15 degrees of freedom.
Again, like the Poker test, the

➤ Figure 1

May 1998 The Delphi Magazine 25

calculation of the probability for
each bucket is again complex, so I
won’t present it here.

Vanishing Point
The complete set of four tests pre-
sented above are coded in the Test
Rand program on this month’s
disk. The program presents you
with a selection of random number
generators and a button to press to
perform all the tests. The results of
the tests are shown in a memo con-
trol. Figure 1 shows the results of
using a faulty generator.

I must inject a note of caution
here. The TestRan program out-
puts these big ‘FAILED’ stickers
against each test that fails (to put it
another way: the result is signifi-
cant at the 5% level). Please note
that the most perfect random
number generator in the world
(one based on quantum events)
will fail each test about one time in
twenty. This does not mean that
the generator is flawed (or indeed
the test), it’s just a natural result of
all the probability floating around.
On the other hand, if a generator

consistently fails a particular test,
it certainly indicates that the test is
showing that the generator is
faulty.

If you are interested in further
random number tests, then by all
means read the relevant section in
Knuth. George Marsaglia, a
researcher in random number gen-
erators at Florida State University,
has written an amazingly complete
suite of random number tests as a
program called DIEHARD. You pro-
vide the program with about 10Mb
of random bytes and it’ll go
through applying the entire suite
to your random numbers. You can
download DIEHARD from http://
stat.fsu.edu/~geo/diehard.html

The TESTRAND program also
contains the additive random
number generator we’ve been talk-
ing about: an excellent source of
random numbers. You can extract
the relevant code from the unit
TstRndU2.PAS and use it in your own
programs.

Also on this month’s disk is a
fairly complete random number
generator class (based on an

additive generator) which pro-
vides a better replacement for
Random. It’s part of the next version
of my freeware EZDSL (Easy Data
Structures Library for Delphi)
library, the current version of
which can be downloaded from
any friendly ftp site near you, or
from The Delphi Magazine Collec-
tion 97 CD-ROM [Along with tons of
other goodies! Ed]. I’m working on
completing EZDSL version 3.00 as I
write (in fact you can regard this
generator class as being in beta),
and by the time you read this it
should almost be ready. See
home.turbopower.com/
~julianb/ezdsl.htm

for the latest news.
Until next time: be capricious!

Julian Bucknall programs (duh!),
acts, writes articles and helps his
girlfriend Donna organize their
wedding in September (a New
Order begins). Sometimes due to
sheer pressure one of these activi-
ties has to give way, and so he’d
like to apologize to her in writing.

	Confusion
	Thieves Like Us
	Way Of Life
	Every Little Counts
	State Of The Nation
	Bizarre Love Triangle
	Age Of Consent
	Books
	Vanishing Point

